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ABSTRACT
In large corporations, millions of cash transactions are booked via
cash management software (CMS) per month. Most CMS systems
adopt a key-word (search string) based matching logic for book-
ing, which checks if the cash transaction description contains a
specific search string and books the transaction to an appropri-
ate general ledger account (GL-account) according to a booking
rule. However, due to the free-text nature of transaction descrip-
tion and the diversity of cash transactions, CMS systems often
fail due to data corruption (truncation, insertions, spelling errors),
paraphrasing, and lack of reusable key word in the description,
requiring significant manual intervention by accountants. Month
over month, accountants manually handle CMS booking failures
in spreadsheets. We present two machine learning models, a GL-
account classification model and a search string extraction model,
to alleviate this manual process. These two models, backed by re-
trieval augmented large language models, can automate booking
for a substantial portion of the manual transactions. Our approach
is robust to common data issues in transaction description. Un-
like typical deep-learning models, our models are interpretable
and explainable. For GL-account classification, our approach has
an accuracy close to human experts. For search string extraction,
compared to other methods such as fine-tuning transformers for
extraction tasks, our approach produces reliable results closer to
accountants.
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1 INTRODUCTION
Similar to a personal bank account, corporations receive bank state-
ments which record their cash activities such as invoice payments,
disbursements, money transfers, and etc. Each cash transaction

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGKDD, August 06–10, 2023, Long Beach, CA
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

needs to be booked into the corporation’s financial ledgers, typ-
ically using a cash management system (CMS). To book a cash
transaction, the CMS checks if the transaction description (a free
text field) contains any keywords ("search string") specified in the
booking rules, and books the transaction to a specific general ledger
account ("GL-account") accordingly. Based on the values of transac-
tions in each GL-account, accountants prepare financial statements.

For large corporations with complex transactions, hundreds of
thousands of booking rules are configured. Despite the extensive
amount of booking rules, a considerable portion of transactions still
fail all existing rules each month and need to be booked manually.
Common root cause of failures including data corruption (trunca-
tion, insertions, spelling errors), paraphrasing, lack of standardized
practices from various legal entities owned by the corporation, and
lack of reusable keywords in the limited length of description. Each
month, accountants download the unbooked cash transactions and
manually find the appropriate search string and GL-account in
spreadsheets. Synthetic examples of failed transactions and search
strings identified by accountants are provided in Figure 1. For con-
fidentiality, all identifiers and entity names presented in this paper
are synthetically generated.

Figure 1: Examples of transaction descriptions, search strings, and
GL-accounts

Accountants look through the transaction description to identify appropriate
search strings highlighted in orange. Due to lacking of reusable search strings,
accountants often use entity names or search string with identifiers. Also,
extraction pattern is often inconsistent among different accountants and
practices might also change over time.

To alleviate the burden of this manual process, we propose two
models for transactions that require manual bookings: one for GL-
account classification and one for search string extraction. The
model suggestions can then be reviewed, approved, or disapproved
by accountants. Our models are trained using a private cash trans-
action dataset from a widely used CMS. Current models cover ∼200
bank accounts and can alleviate ∼80% of manual work. The pro-
posed model is designed for semi-structured transaction description
data with significant presence of identifiers and entity names and
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is robust to data issues such as truncation, insertions, spelling er-
rors, paraphrasing, and inconsistent extraction pattern. It has an
accuracy of 99.7% relative to a human expert1.

2 RELATEDWORK
IdentifyingGL-accounts using transaction descriptions can be framed
as a text classification problem. One prevalent solution to text clas-
sification is to fine-tune pre-trained LLMs ([6], [12], [15]). However,
the performance of fine-tuned models drop significantly when an-
notated data is scarce, especially for minority classes ([5], [17]). The
problem of extracting search strings can be framed as a few-shot
named entity recognition (NER). Most search strings extracted by
humans are entity names that represent buyers or sellers, identifiers
that represent systems processing the transaction, or key words that
describe the nature of the transaction (e.g. "commission", "expense").
Few-shot learning poses a challenge when limited examples are
available for most classes. One popular solution proposed to resolve
this is a prototype network ([18], [9]). Prototype methods learn the
embedding of each entity type. It uses metric learning during train-
ing and nearest neighbor criterion to assign entity types during
inference. However, since entity labels (e.g. identifier type) are not
available in our dataset, this solution is not directly applicable.

With the rise of generative LLMs, recent work has shown that
many NLP tasks can be solved by in-context learning without tun-
ing model weights. [3] proposed an in-context learning approach
using LLMs to solve tasks following a few demonstrations presented
in the prompt. [11] proposed a KNN-augmented in-context exam-
ple (KATE) selection strategy to select examples for the prompt.
Similarly, [8] proposed the REALM model architecture that used a
customized retriever tailored to the task of open-domain question
and answering. In the NER domain, [7] explored few-shot NER via
in-context learning using GPT-2 ([16]).

Our work follows the design of retrieval augmented LLMs ([8])
and combines metric learning adopted in prototypical networks
with in-context learning via generative LLMs. Unlike [11] and [7],
who used embeddings generated by pre-trained LLMs to retrieve
demonstrative examples, we train a customized encoder via metric
learning. Unlike [8], our retriever is optimized for the task of cash
transaction booking and can handle semi-structured text data with
significant presence of acronyms and identifiers. Contrary to pro-
totypical networks, our approach does not require any entity type
labels.

2.1 Dataseet
We use transactions from a commercial CMS to train and test our
model. Transactions from Nov and Dec 2022 are used for model
training and transactions from Jan 2023 are used for evaluation. In
addition to description, each transaction also has attributes such as
the amount, currency, date, and transaction type. We limited the
scope of the model to the top ∼200 bank accounts by volume that
accounted for ∼80% of the transactions manually booked in Jan
2023. Each of these transactions were booked to one of the ∼2000
GL-accounts using one of the ∼370k search strings. The distribution
1Human experts cannot achieve 100% accuracy in GL-account classification task just by
reviewing transaction description. In some cases, information presented in transaction
description might be insufficient. Experts will contact relevant parties, e.g. source
team, bank, to resolve ambiguities

of GL-account and search string is highly imbalanced. Over 50% of
GL accounts have less than 50 transactions per month and 70%+ of
search strings can only match one transaction in the training and
testing dataset.

To test the performance of our proposed model architecture on
close-source SOTA models (e.g. OpenAI models), we also built a
synthetic bank transaction description dataset (Appendix E), which
contains 5,000+ transactions. Like real-world transactions, these
transaction descriptions are semi-structured and dominated by
identifiers (e.g. various transaction IDs coming from ERP systems or
from the bank side). Synthetic data follows a key-value format (e.g.
ORG="AAA Incorporated", BNF="BBB Solution"); we deliberately
omitted the key or value in random cases to simulate inconsistencies
between banks. We share experiment results using the private
dataset as well as the synthetic dataset.

3 MODEL DESIGN
3.1 Inference Architecture Overview
Intuitively, GL-account and search string can be determined by look-
ing at how similar transactions are booked in the history. Based
on this intuition, we built two models, one for GL-account classifi-
cation and one for search string extraction. Both models follow a
two-step process: (1) retrieve similar historical transactions and (2)
make predictions by following historical practices. For any given
new transaction, K-Nearest Neighbour (KNN) retrieves the top K
most similar historical transactions, the associated search string,
and the GL-accounts. To classify GL-account, we simply take the
majority vote over the retrieved historical transactions. To extract
search string, we compile a prompt and use a Generative Large
Language Model (LLM) to perform search string extraction via in-
context learning. We post-process the response from the Generative
LLM to remove extra contents, address limitations, and confirm the
validity of the extracted search string. To define transaction similar-
ity, we train a multi-modal transaction encoder via metric learning.
The transaction encoder generates transaction embeddings, which
are used to measure the distance between transactions for both
models. Figure 2 illustrate the intuition of the model design. Figure
3 provides the overview of inference architecture.

Figure 2: Intuition of how our models work
The new transaction on 2023/04/15 is similar to two transactions in the historical
transaction database, but is dissimilar to the rest. Since these two historical transac-
tions were booked to GL-account 1, the model suggests booking to account 1 for
the new transaction.

As illustrated in Figure 3, both models have two phases: the
encoding phase and prediction phase. During the encoding phase,
historical cash transactions are encoded and saved to a database
along with the ground truth GL-account and search strings used
for booking. In the inference phase, we first call the encoder to
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Figure 3: Overview of model inference architecture
In the encoding phase, historical transactions are encoded and saved to a database along with the ground truth GL-accounts and search strings used for booking. In the inference
phase, we first call a customized encoder to obtain the embedding of the new transaction, then use KNN to retrieve top K most similar transactions from the database. To classify
GL-account, we simply take the majority vote over historical GL-accounts. To predict search string, we compile a prompt, using historical transactions and search strings as
demonstrations, and ask the Generative LLM to extract the search string for the new transaction. The prompt follows next-work-prediction format, compatible with most
open-source LLM.

obtain the embedding of the new transaction, then use KNN to
retrieve top K most similar transactions from the database based
on the L2 distance between the embedding of new transaction and
those of historical transactions. To classify GL-account, we simply
take the majority vote over GL-accounts of the retrieved historical
transactions. To extract search string, we compile a prompt, using
historical transactions and search strings as demonstrations, and
ask the Generative LLM to extract the search string for the new
transaction. Pre and post processing is added to address limitations
and validate the search string extracted by LLM. The following
sections explain the major components in the model inference
architecture.

3.2 Transaction Encoder
As presented in Figure 4, transaction encoder is a multi-modal en-
coding module with late fusion. It takes text features, categorical
features, and numerical features from a transaction and outputs an
embedding. Text features are concatenated with a fixed prompt and
processed by pre-trained and fine-tuned LLM; categorical features
are mapped to embeddings (learned during training) and numerical
features are pre-standardized. The linear projection of the sentence
embedding generated by LLM is concatenated with categorical fea-
tures and numerical features, then processed by a single MLP layer.
The output of the MLP layer is the final transaction embedding. We
use metric learning with triplet loss to train the encoder. Multiple
negative sampling logic is applied to facilitate learning.

3.2.1 Loss Function for Transaction Encoder. To train the trans-
action encoder, we use metric learning with triplet loss. Metric
learning, instead of a softmax classification head, is used because
of the following concerns:

Figure 4: Transaction encoder architecture
Transaction encoder is a multi-modal encoding module with late fusion. It takes
text, categorical and numerical features and outputs embedding. We use metric
learning with triplet loss to train the encoder.

(1) Reusability of the encoder module. The search string extractor
also relies on transaction embeddings to perform KNN retrieval
and prompt compilation.

(2) High number of GL-account class labels (∼2000) and the ex-
treme imbalanced nature of the data distribution across differ-
ent categories. Metric learning tends to perform better on rare
classes with limited examples. Appendix A.1 provides details
of our experiment using classification approach.

(3) Training time. On image classification tasks, metric learning
tends to take less training time compared to classification ([10]).
We observed similar pattern in our experiments (Appendix A.1).
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(4) Scalability concern over re-training for new GL-accounts, new
bank accounts, and changes in accounting practices. New GL-
accounts or bank accounts could be added due to regional expan-
sion, new business or merger and acquisition, and accounting
practices could change overtime due to regulation changes.
With the classification approach, the classifier would need to
be re-trained. With the encoder + KNN approach, encoder re-
training is not mandatory. Model could perform zero-shot infer-
ence as long as similar transactions are encoded in the database.
Appendix B provides more details on zero-shot performance of
the encoder.

3.2.2 Sampling Logic for Triplet Generation. Triplets are sampled
according to the GL-accounts (class label). Transactions booked to
the same GL-accounts are positive pairs, while transactions booked
to different GL-accounts are negative pairs. To facilitate efficient
learning, we adopt 2 rounds of negative mining strategy, one before
we start training the model, one after we train the model with 1
epoch of data.

The first round is simple negative mining based on shared cate-
gorical features. Hard-negatives are transactions that share similar
attributes, but eventually booked to different GL-account. We up-
sample negative transactions pairs that come from the same bank
account and share the same transaction type. We do not follow the
distance based negative-mining techniques mainly due to concerns
overs the accuracy of distance metrics. Since transaction description
contains large amounts of IDs and entity names (90%+ in certain
cases), distance metrics can be highly inaccurate.

The second round of negative mining is based on model errors
evaluated on training data. After 1-epoch of encoder training, we
generate hard negatives based on model prediction errors. For any
given anchor transaction, the encoder encodes the transaction and
KNN retrieves the top K similar transactions. Within the retrieved
transactions, if the transaction is booked to a GL-account other
than ground truth anchor GL-account, we consider the historical
transaction as a hard negative. A L2 distance filter is also applied.

3.2.3 Large Language Model. We use a pre-trained BERT ([6]) as
the base language model for transaction encoder. We further fine-
tune BERT model on the masked-language-model (MLM) task on
transaction description. All parameters were unfrozen during MLM
fine-tuning and encoder training. However, ablation analysis (Ap-
pendix A.2) shows fine-tuning BERT on MLM task have limited
impacts on the final model performance.

3.3 Search String Extractor
As shown in Figure 5, search string extractor relies on the Genera-
tive LLM to perform in-context learning. Pre-processing and post
processing are added to address limitation of the model response.
To validate the search string extracted by the model, we perform
validation by back-testing the new search string using historical
transactions.

3.3.1 Generative Large Language Model. We rely on a pre-trained
generative LLM to perform in-context learning for search string
extraction. To select an appropriate generative LLM, we tested the
following models using the prompts listed in Appendix D: FLAN-
UL2([20]), FLAN-T5-XL([4]), FLAN-T5-XXL([4]), BLOOM-7B([2]),

Figure 5: Architecture of search string extractor
Extractor mainly leverages in-context learning capability of generative LLM. Pre
and post processing are added to address limitation of the model response. We also
back-test the extracted search string using historical transactions.

BLOOM-176B([2]), GPT-J-6B([21]), and Alexa-20B([19]). Among all
of the models tested, only BLOOM-176B and Alexa-20B were able
to generate correct predictions in all samples; FLAN-T5-XXL and
FLAN-UL2 (X-denoising head) made 1 mistake while none of the
other models generated any reasonable results. Since BLOOM-176B
and Alexa-20B are the two biggest model among all models tested,
we conclude that model scale is a key factor that drives the quality
of in-context extraction results. We used Alexa-20B for all major
experiments. 2

3.3.2 Limitations of the Search String Extractor . We noticed four
types of errors with the search strings generated by Alexa-20B.
Pre-processing and post-processing modules are added to address
those limitations. We verified that those issues were not specific to
Alexa-20B via sample testing using BLOOM-176B.
(1) Spacing. Non-standard spacing, such as tab or double-space are

sometimes replaced by a singe space in the model output. For
example, the correct search string is “AAA<tab>SOLUTION”,
while model outputs “AAA<space>SOLUTION”. Sample testing
shows BLOOM-176B also shares the same issue. To fix this issue,
we use a post-processing rule based on the location mapping
between text with spaces and text without spaces to recover
the correct search string.

(2) Casing. Most bank descriptions in our dataset are sent in all
upper-case letters. However, in cases where lower-case is used,
Alexa-20B tends to auto-capitalize the extracted search string
regardless of the original casing. For example, the correct search
string is “AAA Solution Inc.”, while the model outputs “AAA
SOLUTION INC.”. Sample testing shows BLOOM-176B also
shares the same issue. We use a post-processing rule to fix the
casing.

(3) Spelling correction. Bank description could contain spelling
errors or truncated words. Alexa-20B tends to auto-correct the
spelling issues. For example, the correct search string is “BBB
HEALTHCAR. INC”, while the model outputs “BBB HEALTH-
CARE. INC”. We use post-processing rule to fix the issue by
adopting the longest matching string between the search string
extracted by the model and the original transaction description.

(4) Long-range dependency. It is observed that Alexa-20B tends
to generate unreasonable responses when the transaction de-
scription is long and the correct search string is located at the

2We want to balance the trade-off between model size and capability, so we chose the
smallest model that passed our prompt tests. To test the stability of model output, each
candidate model is invoked multiple times under varying temperatures.
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front or middle of the description. Similar issues are observed
on BLOOM-176B. We believe the issue is related to long-range
dependency. Intuitively, attention in transformers are rather
localized and models generally see limited associations between
words that are very far away from each other in pre-training.
To address this issue, we use pre-processing rules to truncate
long description where we tend to see high error rate. Only 2
rules are configured as most failures follow 2 formats. However,
we recognize the scalability risk of this rule-based fix and will
explore other solutions. Appendix C provides examples and
more experiment results related to this finding.

3.3.3 Validation of extracted search string. Search string extracted
by the model should only map to a single GL-account. We vali-
date the search string by back-testing using historical transactions.
Specifically, we locate all historical transactions stored in the pri-
vate transaction database that contain the proposed search string
and confirm if those historical transactions were booked to the
same GL-account. If not, the proposed search string would lead to
booking errors, thus we treat it as failing validation.3

4 EVALUATION RESULTS - PRIVATE DATASET
4.1 Evaluation of Transaction Encoder - Private

Dataset
As it is hard to evaluate the quality of embedding directly, we rely
on the performance of downstream tasks to evaluate the encoder.
For GL-account classification, we use classification accuracy as the
metric. We also benchmarked the performance of our customized
encoder with out-of-the box encoders using pre-trained LLMs, such
as pre-trained BERT and pre-trained FLAN-T5. For confidential-
ity, we disclose the accuracy relative to human expert in Table 1.
Evaluation results for search string extractor are covered in 4.2.

Table 1: Embedding Quality - Measured via accu-
racy of GL-account classification task (Our private
dataset)

Model Accuracy

Human 100%
Ours 99.7%
Pre-trained BERT 6.8%
Pre-trained fine-tuned BERT* 7.0%
FLAN-T5-small-mean-enc 8.3%
FLAN-T5-small-enc-dec 6.7%
FLAN-T5-xl-mean-enc 7.1%
FLAN-T5-xl-enc-dec 7.3%
* Pre-trained BERT fine-tuned on MLM task using
transaction descriptions.

Our trained encoder + KNN achieved an accuracy of close to hu-
man performance on GL-account classification task, while all other
out-of-the box LLMs are 10 times less accurate compared to our
3If the search string suggested by the generative model failed the validation rule, model
would, by default, output the entire description as the search string. This approach is
not desirable although still valid.

model. For a fair comparison, all features used by our transaction
encoder are concatenated in the format of “<Feature name 1> is
<Value 1>. <Feature name 2> is <Value 2>...” and used for generating
text embeddings. We set K to 3 for KNN. For FLAN-T5, we used two
types of embeddings: average embedding value from the encoder
(“mean-enc”) and embedding value of the first output of decoder
(“enc-dec”), following the work of [13]. As an out-of-the-box en-
coder does not know the key words and patterns that determine
the GL-account, none of them achieve desirable accuracy.

For our transaction encoder, we also conducted a manual sample
review of the model error. Based on the sample review and discus-
sions with accounting experts, we determined that most errors are
due to insufficient information in the transaction description. In
these cases, human-to-human communication is required to make
appropriate booking decision4. The remaining errors are mainly
cases where very few training data of similar format (less than 5,
often 0 or 1) are available.

4.2 Evaluation of Search String Extractor -
Private Dataset

Search string extraction is subjective in nature. Even though there
is some tribal knowledge for selecting representative search strings,
different accountants may follow different practices and practices
also change over time. For the example description “REFERENCE
<ID1> <ID2>/BNF/<seller name>/...”, while an accounting expert
might recommend extracting <seller name>, some accountants
might still choose <ID1> or even <ID2>/BNF/<seller name>. To
accommodate the subjective nature of search string extraction, we
use four metrics to evaluate the extractor:

(1) Ratio of usable search string. A usable search string is a
search string that exists in the transaction description and
validated by historical transactions (as described in section
3.3.35). Ratio of usable search string = count of usable search
strings/total number of transaction descriptions.

(2) Ratio of re-usable search string. A re-usable search string
is a search string that exists in the transaction description,
validated by historical transactions and can match more than
one historical transaction. Ratio of re-usable search string =
count of re-usable search strings/total number of transaction
descriptions.

(3) Ratio of exact match. Count of (search string extracted by
model = search string extracted by accountants)/total number
of transaction descriptions.

(4) Jaccard distance. We use Jaccard distance to measure simi-
larity between search string extracted by the model and that
extracted by accountants. 6

4Due to insufficient information in the bank description, human experts cannot achieve
100% accuracy just by reviewing bank description
5If a search string fails the validation rule, we do not count it towards usable ratio. In
theory, we can always use the entire transaction description as the search string. In
practice, this is not recommended by accounting experts and should be treated as a
last resort. For example, if GL-account classifier provides the GL-account, but search
string extractor fails to provide valid search string, we default the search string to the
entire transaction description.
6For example, description is “...AAA SOLUTION INC. USA...", model extracted "AAA
SOLUTION INC", accountants extracted "AAA SOLUTION INC. USA". Both search
strings are seller names, yet differ slightly in length.
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The first twometricsmeasure if the extracted search string can be
used or re-used; the last twometrics compare the similarity between
model-extracted search string and human-extracted search string.

We also train an extractor using pre-trained BERT as benchmark.
BERT-extractor uses token-level label and is trained with cross-
entropy loss. At a token-level, 0 means not extracted and 1 means
extracted. Since the ground truth search string requires a letter-
level label and pre-trained BERT operates at token-level, we set
label to 1 if we run into label conflict. For example, description =
“REFER Solution Inc”, tokens = [“REFER”, “Solution”, “Inc”], ground
truth search string = “ER Solution Inc”. We set label for “REFER” to
1 even though “REF” was not in the ground truth.

Table 2: Evaluation results of search string extractor (accu-
racy relative to our model)

Metrics

Usable Re-usable Exact-
match

Avg Jaccard
distance

Ours 100.0% 100.0% 100.0% 1.00
BERT-0.01 26.8% 7.3% 5.6% 1.81
BERT-0.03 38.1% 13.3% 4.6% 1.87
BERT-0.05 38.1% 33.5% 6.0% 2.00
BERT-0.07 44.4% 88.2% 5.0% 2.13
BERT-0.09 51.3% 109.9% 3.1% 2.27

Table 2 presents the evaluation results. For confidentiality, we
disclose the accuracy relative to our model. Since BERT extractor
outputs probabilities, we evaluate the BERT extractor at different
probability thresholds. As we increase the probability threshold, we
observe an increase in re-usable and usable ratio, yet decrease in the
similarity between results extracted by BERT and by accountants.
Our approach significantly outperforms BERT extractor at almost
all probability thresholds except the re-usable ratio from BERT-0.09.
However, for BERT-0.09, many extracted search strings failed vali-
dation process, thus not usable. Compared to our approach, BERT
was not able to follow the patterns of how accountants select search
string. Sample review shows BERT tends to fail when extraction
pattern is inconsistent. On the other hand, when generative LLM
is presented with inconsistent practices in the prompt, it tends to
follow one of them. Appendix F provides sample extraction results
from BERT and Alexa-20B.

5 EVALUATION RESULTS - SYNTHETIC
DATASET

Due to confidentiality concerns, we did not perform experiments
using closed-source SOTA models on the private dataset. As an
alternative, we benchmark with OpenAI SOTA models using syn-
thetic bank transaction data (Appendix E). We also evaluate the
robustness of our approach by explicitly ingesting common data
formatting issues, inconsistent human extraction labels (4.2) and
long-range dependency issues (3.3.2) into synthetic data.

5.1 Evaluation of Transaction Encoder -
Synthetic Dataset

We evaluate embeddings generated by OpenAI text-embedding-
ada-002 on the task of GL-account classification.7 Similar to other
pre-trained LLM’s shown in 4.1, text-embedding-ada-002 does not
perform well. Embeddings generated by text-embedding-ada-002
achieved an accuracy of 0.5%. Distance between embeddings gen-
erated by text-embedding-ada-002 is not reflective of how those
transactions are booked.

5.2 Evaluation of Search String Extractor -
Synthetic Dataset

We evaluate the proposed search string extractor using open-source
and close-source generative LLM’s. As a baseline, we follow the
same prompt format as illustrated in Figure 3 and ensure Example 1
and Example 2 follow the same description and extraction pattern.
To test the robustness of our approach, we explicitly ingest noise to
our prompts. Specifically, we quantify the impacts of the following
data issues:
• Text corruption. We randomly ingested formatting issues (in-
sertion of space, missing delimiter) into 30% of the descriptions.

• Inconsistent demonstrations. We conducted two experiments.
In the first experiment ("irrelevant example"), we keep the first
demonstration and replace the second demonstration with an
irrelevant example8. Experiment one mimics the scenario where
KNN retrieves an irrelevant example. In the second experiment
("inconsistent search string"), we keep transaction descriptions in
both demonstrations, but modify the search string of the second
demonstration. Experiment two simulates the inconsistency in
the search strings extracted by human (4.2).

• Long-range dependency (discussed in 3.3.2). We triple the
length of a typical transaction description by appending ran-
dom address, bank name and ∼20 random identifiers of various
formats. We deliberately keep the correct search string at the
beginning of the description.
We use OpenAI text-davinci-003 and Alexa-20B in our experi-

ments. We only adopt the exact match ratio, which measures if the
search string extracted by the model is the same as search string de-
fined by the rule.We do not apply pre-processing or post-processing
described in 3.3.2. Table 3 shows the experiments results.

As shown in Table 3, both Alexa-20B and Danvinci-003 are gen-
erally robust to text corruptions and inconsistent demonstrations.
Danvinci-003 is also robust to the long-range dependency issue. For
Alexa-20B, we would need to rely on the pre-processing described
in 3.3.2 to address the limitation on long description. For "irrelevant
example" test, we further tested model performance with a single
correct demonstration. Using Alexa-20B, 89% of errors are corrected
if a single correct demonstration is used. For Davinci-003, all errors
are corrected. This implies having less yet highly relevant examples
are better than having irrelevant examples for in-context extraction
task.

7According to OpenAI Blog post([14]), text-embedding-ada-002 performs the best on
text classification and text search tasks among all OpenAI text embedding models.
8We replace example 2 with a description and search string from a different GL-account.
The format of the description in Example 2 is quite different from example 1 and the
query.



Cash Transaction Booking via Retrieval Augmented LLM SIGKDD, August 06–10, 2023, Long Beach, CA

Table 3: Search String Extraction Results Using Synthetic
Transaction Dataset - Exact Match Ratio

Baseline Text
corrup-
tion

Irrelevant
exam-
ple

Incon-
sistent
search
string

Long
descrip-
tion

Alexa-20B 99.8% 99.8% 97.0% 98.1% 33.2%
Davinci-003 100.0% 100.0% 98.0% 99.3% 100.0%

6 CONCLUSION
We present two models, GL-account classifier and search string
extractor, following a retrieval augmented large language model
architecture to alleviate manual booking currently performed in
spreadsheets. For GL-account classification, our approach has an
accuracy close to human experts despite the extreme imbalanced
distribution of the class labels. For search string extraction, com-
pared to other popular methods such as fine-tuning pre-trained
transformers for extraction tasks, our training-free approach pro-
duces results that are more reliable, and closer to accountants. Both
models are robust to data issues such as insertion, missing delim-
iter, paraphrasing and inconsistent extraction labels. Unlike typical
deep-learning models, our model results are highly interpretable
and follow the same method as how human makes booking deci-
sions. We also present the similar transactions extracted by KNN
to the accountants, which facilitates the human review process.
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A ABLATION ANALYSIS
A.1 Classification Approach vs Metric Learning

Approach
We compared the performance of classification approach using
cross-entropy loss with metric learning using triplet loss for GL-
account classification task. We conducted an experiment on 20 bank
accounts where a classification head was added to the encoder and
the model was trained with cross-entropy loss. When trained until
convergence, we observe less than 50% accuracy on GL-account
classification task on bank accounts with less than 30 training data
points despite up-sampling. With metric learning (trained on the
same 20 bank accounts), similar issues were only observed on bank
accounts with fewer than 5 training data points. Also, we find it
faster to train via metric learning. Given the same amount of train-
ing time and the max batch size allowed by the same hardware,
models trained via classification approach did not reach conver-
gence with the training loss continuing to trend down. Evaluation
results confirmed the classifier at that checkpoint had less than 30%
accuracy.

A.2 Fine-tune LLM using masked language
modelling

We conducted a benchmarking experiment on the GL-account clas-
sification tasks using a pre-trained BERT and pre-trained BERT
fine-tuned on the masked-language-model task on transaction de-
scriptions. We fine-tuned BERT for 2 epochs. We confirmed the
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training loss is reasonable and the prediction for the masked to-
ken is reasonably correct if the masked token is not part of an
identifier. However, as shown in Table 1, we observe limited lift in
the accuracy of GL-account classification task between BERT and
fine-tuned BERT. We believe this is because GL-account classifica-
tion task requires strong institutional knowledge. It is hard to tell
how to book a transaction without referring to historical booking
practices.

A.3 Combine Categorical Features with Text
Features

Categorical features, such as bank account number, can be concate-
nated with the transaction description directly in a text format. For
example, “the transaction description is <transaction description>.
The bank account number is <bank account number>”. This would
eliminate the need to concatenate text encodings with categorical
embedding. However, we did not obtain ideal results with this re-
vised design. With the removal of categorical feature, we observed
clear slow-down in the decrease of training loss and increase in
oscillation. The experiment was terminated as we are skeptical of
the benefits of the revised design.

A.4 Customized Tokenizer
In one experiment, we replaced the pre-trained tokenizer with a cus-
tomized BPE tokenizer trained using the transaction descriptions.
However, with the new tokenizer, it became extremely difficult to
train the encoder even after multiple arounds of hyper-parameter
adjustments. Since token embedding is the first layer of the lan-
guage model, embedding values have profound impacts on the final
results. We suspect switching tokenizer places the model in an
“alien world” where common sense gained in the human world
is no longer applicable. As a result, the nature of model training
changed from fine-tuning to learn-from-scratch.

B GENERALIZATION TO OUT-OF-SAMPLE
DATA POINTS

Due to changing business landscape, new bank accounts could
be added and existing booking rules could change. If the model
generalized well to out-of-sample data points, we can simply add or
adjust labelled data in our embedding databases without fine-tuning
our encoder. To verify the generalization capability, we evaluate the
encoder by manually adding 50 transactions from bank accounts
unseen in training to embedding database without fine-tuning the
encoder. The model was able to classify all 50 cases to the correct
GL-accounts.

C LONG-RANGE DEPENDENCY ISSUES WITH
GENERATIVE LLM

During error analysis, we noticed Alexa-20B tends to fail when the
transaction description is long and the correct search string is lo-
cated at the beginning or in the middle of the description. For exam-
ple, description is “OTHER REFERENCE: <ID1>RATE=<exchange
rate> FX AMT=<amount> CCY=<currency><ID2> ... OGB=<bank
name><bank location>...<ID3> ORG=<sender’s name> <sender’s
address> <ID4>....OPI=<sender’s account number> <ID5>...<receiver’s

name>...<IDn><time stamp>”. The correct search string, highlighted
in orange, is <sender’s name> after key word “ORG=”. However,
Alexa-20B often outputs a wrong entity (e.g. bank name), or even
random strings such as “Inc. Inc. Inc”. Similar issues are observed
on BLOOM-176B, which also tends to output the first bank name
presented in the transaction description. To verify the root cause
of failures of the generative model, we conducted 3 experiments.

(1) In experiment 1, we truncated all descriptions in the prompt
using rules (e.g. truncate to key word “OPI=”). Alexa-20B is able
to output correct results with the shortened text input.

(2) In experiment 2, we manually move the correct search string to
the end of the description. Alexa-20B is able to output correct
results.

(3) In experiment 3, we tested AI21 Jurassic-2 Jumbo ([1]), a model
with much bigger context window size (8192), with the same
sample prompt. We noticed AI21 Jurassic-2 Jumbo is able to
generate correct outputs.

Based on those results, we believe the issue we are experiencing
are related to long-range dependency.

D SAMPLE PROMPTS USED TO SELECT
GENERATIVE LLM

The correct answer is in bold and search strings in the demonstra-
tions are highlighted in orange. The task is presented in a “next-
word-prediction” format, instead of a question format, because
many LLMs we tested have not been instruction-tuned. Prompt
1 follows the format of our search string prompt. For prompt 2,
we intend to test the LLM’s to perform extraction and generation.
We deliberately introduced slight inconsistency in the examples
(“Fund Transfer” vs “transfer”). Note that for confidentiality, the
examples presented use synthetically generated data but follow the
same format as real cash transactions.

Prompt 1
The task is to extract key words from remittance line by following
the examples below.
Example 1:
In remittance line “FR:WIRE RECEIPT EU 20231203/REF/AAA
SOLUTION INC LUXEBURGER ALLLE, 2319 MULHEIM AN DER
RUHR/XION 6D-B126 TRANINV2102-129012-31029,
INV-23932-392039091OA JPY:219039
UI232K0D3F9W9DKDl21lJOP21”, the correct search string is
“6D-B126 TRAN”.
Example 2:
In remittance line “FR:WIRE RECEIPT/ EU 20230921/REF/GREAT
TECHNOLOGIE CO LTD 23212 AVENUE JOHN F. KENNEDY,
NYC PO:2312832/XION 4D-A132 TRAN2323423-34230842,
INV40238432-422 1OA EUR:3248048 K078DF3FUW9kDl21X0”, the
correct search string is “4D-A132 TRAN”.
Example 3:
In remittance line "FR:WIRE RECEIPT/ EU 20231201/REF/BEST
SANDWITCH GBMH 4293 KURFURSTENDAMM, 342 BERLIN,
DEUTSCHLAND/XION 6L-7E TRAN34980248-12931-12,
INV-41208013820-128301OA EUR:28103821 E89D57F921F98K211L",
the correct search string is “6L-7E TRANS”
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Prompt 2
The task is to generate general ledger description by following the
examples below.
Example 1:
In remittance line “FR:WIRE RECEIPT EU 20231203/REF/AAA
SOLUTION INC LUXEBURGER ALLLE, 2319 MULHEIM AN DER
RUHR/XION 6D-B126 TRANINV2102-129012-31029,
INV-23932-392039091OA JPY:219039
UI232K0D3F9W9DKDl21lJOP21”, correct general ledger
description for this line is “6D-B126 Fund Transfer”.
Example 2:
In remittance line “FR:WIRE RECEIPT/ EU 20230921/REF/GREAT
TECHNOLOGIE CO LTD 23212 AVENUE JOHN F. KENNEDY,
NYC PO:2312832/XION 4D-A132 TRAN2323423-34230842,
INV40238432-422 1OA EUR:3248048 K078DF3FUW9kDl21X0”,
correct general ledger description for this line is “4D-A132
transfer”.
Example 3:
In remittance line "FR:WIRE RECEIPT/ EU 20231201/REF/BEST
SANDWITCH GBMH 4293 KURFURSTENDAMM, 342 BERLIN,
DEUTSCHLAND/XION 6L-7E TRAN34980248-12931-12,
INV-41208013820-128301OA EUR:28103821 E89D57F921F98K211L",
correct general ledger description for this line is "6L-7E Transfer"
or "6L-7E Fund Transfer".

E SYNTHETIC TRANSACTION DATA
We built a synthetic transaction dataset following key-value
format. For example, format
"/INV0001071178449,ADDITIONAL/AUR1905-
110,REFERENCE/ZZF2RLBZ" has keys NaN, ADDITIONAL and
REFERENCE. The "/" character is used to separate keys from
values and the "," character is used to separate key-value pairs. We
deliberately drop some keys, values or delimiter to mimic the data
issues observed in real transaction data. Keys are randomly
sampled from acronyms frequently seen in cash transactions and
values are randomly generated (e.g. IDs) or sampled from public
dataset (e.g. corporate name and address). Since most IDs follow
certain ID format, we define prefix, length range, composition for
IDs to mimic real data. We do not include any payor name (e.g.
"MASTERCARD") in our synthetic data because transactions with
well-defined payor names tend not to fail CMS, while the focus of
our model is to handle ambiguous cases where reusable search
strings are not available.
To generate synthetic GL-account, we assume any transactions
that share the same keys and delimiters should be booked to the
same account. We use rules to generate synthetic search string. If
sender’s name is present in description, we select sender’s name; if
not, we use reference ID (e.g. AUR41959-4618); if not, we use
transaction ID (e.g. O8DL5FSU).
Below are 3 samples from synthetic data.

(1) Description = "OMT=4,750.00 BNF=The EXCELLENT GROUP,
INC. ADDITIONAL=AUR41959-1234 COURTHOUSE DRIVE",
GL-account = "account 1", search string = "The EXCELLENT
GROUP, INC."

(2) Description = "OMT=22000.0 BNF=SMART LEARNING
CENTRE AUR0687834-65 555-3909 HUDSON AVE, LAKE CITY",

GL-account = "account 1", search string = "SMART LEARNING
CENTRE"

(3) Description = "/REFERENCE:O8DL5FSU/OMT:3251182.0/
ADDITIONAL:AUR-467-19013/BNF:CHF-GA-BEACON
VISITATION VAL", GL-account = "account 3", search string =
"AUR-467-19013"

Example 1 and Example 2 share the same GL-account because both
transactions share the same keys and delimiters, even though key
"ADDITIONAL" is omitted in Example 2. Example 3 belongs to a
different GL-account.

F EXTRACTION SAMPLES FROM
GENERATIVE LLM AND BERT

Below are extraction samples from BERT and our extractor.
Extracted search strings are highlighted in orange. BERT selects an
ID in additional to the ground truth search string. ID that looks
like “REF 6008091Q00091989” is often used as search string for a
slightly different description format. BERT might not picked up
this pattern during training as the number of samples available for
each format is rather limited. In addition, there is no written
definition of transaction description format.
Inference transaction and ground truth from accountants :
ENTRY-25 JANTRF/REF 6008091Q00091989/ORD/ ACC PAY
NATIONWIDE 172223 2I380DJ2M0DHK21/BNF/ AAA SOLUTION
BANK BCD CREDIT TRANSFER
KNN retrieved historical transaction 1:
/ENTRY-23 DECTRF/REF 6008476Q0017796/ORD/ON TRACK
RETAIL LI 278000 83DSS01M2SS7821 /BNF/ BEST SANDWICH
BANK BCD CREDIT TRANSFER
KNN retrieved historical transaction 2:
/ENTRY-30 DECTRF/REF 6008473Q0009621/ORD/ACC PAY
NATIONWIDE 172223 2I6SJOP92SDP19FM/BNF/ GREAT
PLUMBER BANK BCD CREDIT TRANSFER
Results from generative LLM:
ENTRY-25 JANTRF/REF 6008091Q00091989/ORD/ ACC PAY
NATIONWIDE 172223 2I380DJ2M0DHK21/BNF/ GREAT
PLUMBER BANK BCD CREDIT TRANSFER
Results from BERT (0.01):
/ENTRY-25 JANTRF/REF 6008091Q00091989/ORD/ ACC PAY
NATIONWIDE 172223 2I380DJ2M0DHK21/BNF/ GREAT
PLUMBER BANK BCD CREDIT TRANSFER
Results from BERT (0.03):
/ENTRY-25 JANTRF/REF 6008091Q00091989/ORD/ ACC PAY
NATIONWIDE 172223 2I380DJ2M0DHK21/BNF/ GREAT
PLUMBER BANK BCD CREDIT TRANSFER
Results from BERT (0.05):
/ENTRY-25 JANTRF/REF 6008091Q00091989/ORD/ ACC PAY
NATIONWIDE 172223 2I380DJ2M0DHK21/BNF/ GREAT
PLUMBER BANK BCD CREDIT TRANSFER
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